Prepayment metering system strategies and implementation challenges

Surendra Jhalora

Secure Meters Ltd
How does Prepayment system work?

1. Electricity bought in advance
2. Amount as per convenience
3. To buy electricity go to Vending Counter: place where electricity is sold
4. Receipt is provided with a unique number printed on it
5. Enter the number into your keypad
6. Electricity credited into meter in Rupees
7. Enjoy Electricity
Elements of Prepayment System

- Meter with inbuilt disconnecting device
- Tokens - for information transfer
- Vending center - place where electricity is sold
Prepayment in Electricity!

- Paying before consumption
 Is it NEW to us?

- What about essential commodities like:
 - Petrol/Diesel
 - Cooking gas
 - Dish TV
 - Mobile prepaid cash cards
The Sociology of prepayment

- Prepayment is not just a technology. It has a social impact.
- In the past Prepayment has been used as a tool for debt recovery.
- Initial reaction to change has been cautious.
- However, people have opted for prepayment, as they see the benefits.
- Introduction must be planned.
- A prepayment system trial is essential to understand the technology and its sociology.
- A well planned introduction can make it the technology of choice for the customers.
The Challenge is to make prepayment system a WIN-WIN solution for both utilities and consumers.
What the consumer is looking for in a prepayment system?

- Convenience of making payment
- Monetary Information and being in control
- Confidence in the cost of consumption
- Budgeting
- Energy conservation
What an Utility is looking for in a prepayment system?

- Upfront revenue collection
- No debts and means of debt recovery
- Reduce billing costs and eliminate billing complaints
- Eliminate hassles of disconnection and reconnection
- Demand side management
- Provide better customer services
- Better customer engagement and energy conservation
Issues to address

- Regulatory support
- Government support
- Consumer issues
- Identification of smart prepayment system
- Utility organisation
- Steps to move forward
Role of regulators

- A vital role in implementation
- Active support needed
- Rebate on energy charges and meter rent
- Implementation of Complex Tariffs
 - Slab rate for energy and demand
 - TOU
 - Minimum charge
 - Demand based charges
 - Simplification needed for Retrospective tariffs – Fuel surcharge, next slab rate applicable for previous slab, special energy charge
 - Implementation of Energy auditing through sales data
Government support

- Support required for
 - Policies for implementing prepayment
 - Govt connections
 - Temporary connection
 - Funding prepayment system
 - Taxes
 - Simplification of tax structure
What parameters to consider?

Identify Smart prepayment system

✓ Coverage of target customers
✓ Customer profile
✓ Customer convenience
✓ Revenue collection and control
✓ Tamper and Fraud prevention
✓ Flexible tariff administration
✓ Load management and control
✓ Appropriate vending architecture
Convenience of payment | multiple vending options

- Merchant / shop
- Third party service providers
- Merchant / shop
- Bank ATM
- Kiosk
- Bank Website
- Utility Website
- Bank Website
- Utility Website
- Bank Website
- Utility Website

- 24 hr Call Centre
- SMS
- VISA
- MasterCard

Metering India

Billing/CRM India
Cost information & involvement

Cost of current load being used based on tariff price

Cost of previous day, week and month consumption

Cost of previous 12 months consumption (month-by-month)

<table>
<thead>
<tr>
<th>KW LOAD</th>
<th>PREV DAY</th>
<th>Rs. 1,200</th>
</tr>
</thead>
<tbody>
<tr>
<td>KW 19-00</td>
<td>PREV WEEK</td>
<td>Rs. 7,700</td>
</tr>
<tr>
<td>LOAD COST</td>
<td>PREV MNTH</td>
<td>Rs. 32,000</td>
</tr>
<tr>
<td>Rs. 102.60/HR</td>
<td>FEB</td>
<td>Rs. 33,000</td>
</tr>
<tr>
<td></td>
<td>JAN</td>
<td>Rs. 28,000</td>
</tr>
<tr>
<td></td>
<td>DEC</td>
<td>Rs. 27,000</td>
</tr>
<tr>
<td></td>
<td>NOV</td>
<td>Rs. 25,500</td>
</tr>
</tbody>
</table>
Special Features

• User friendly interface
• Display in Rupees
• Set Alarm levels
• Friendly credit hours (5pm-10am)
• Friendly credit days (Sun/Holiday)
• Emergency credits
The prepayment electricity tariff

- Flat tariff
- Step tariff
- Time of use tariff
- Tariffs as per customer type
- Standing Charges
- Taxes
- Debt Recovery

There is a need to rationalize tariffs for prepayment
Flexible Tariff capability

- Liberty Prepayment Meter can store 8 defined ‘SLAB’ tariffs

First 100 kWh at 2.34 Rs/kWh

Second 300 kWh at 2.90 Rs/kWh

Above 300 kWh’s at 3.30 Rs/kWh

Minimum charges Rs 100 per month

Monthly Billing period

Next Month

Slab reset
Flexible Tariff capability

- Support 8 ‘Step’ tariffs and store 8 defined ‘Time of Day’ (Peak-Off Peak) tariffs.
- ‘Time of Day’ (Peak-Off Peak) tariffs is possible due to the presence of inbuilt RTC.

Max Demand based monthly charges for Peak period Rs 12 per KW
Load Limiting—Demand side management

- 100A
- 80A
- Alarm
- Disconnection
- Demand Profile
The Economics of prepayment

- Prepayment meters are more expensive compared to conventional energy meters
- Trade-off between cost of incremental investment against the tangible and intangible benefits

Tangibles:
- Up front cash collection
- No meter reading, billing and bill distribution

Intangibles:
- Customer Satisfaction
- Better load management
Utility organisation

Creating organisation within utility
- IT
- Finance
- Meter management
- User group
- Regulatory, customer helpline
- …and a dedicated cross functional project team for prepayment implementation
implementation

- Surveys
- Pilots
- PR campaign
- Consumer education
- Vending infrastructure
- Branding
Utility experiences ... using Prepayment system
Operational Cost Savings
Northern Ireland Electricity UK
Liberty Project
Northern Ireland Electricity (NIE) Home Energy Direct Project

Over 220,000 meters installed

- 50% reduction in billing costs
- 73% reduction in meter reading costs
- 14% reduction in call handling
- 45% reduction in debt management costs
- Debtor days reduced by 20%
- 95% of tariff changes effected within two weeks

Figures courtesy of NIE
System Loss Reductions
Bangladesh Power Development Board
Liberty Project
Comparison of Feeder System Loss Oct-06/Oct-07 after implementation of Liberty Prepayment System at Chittagong

<table>
<thead>
<tr>
<th>Energy Record Month</th>
<th>No. of Consumers</th>
<th>Feeder Number</th>
<th>Energy Import by Feeder MU</th>
<th>Total Energy Sold MU</th>
<th>System Loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 06</td>
<td>4332</td>
<td>H-03</td>
<td>22.56</td>
<td>17.6</td>
<td>21.99</td>
</tr>
<tr>
<td>October 07</td>
<td>4338</td>
<td>H-03</td>
<td>19.44</td>
<td>18.10</td>
<td>6.85</td>
</tr>
</tbody>
</table>

Revenue improvement is approx 30%
Energy Saved is approx. 15.14%
& Peak demand has been reduced by 16.38%
(Energy Conservation)
West Bengal State Electricity Board
Liberty Project
Energy Conservation at Greenwood Park, Kolkata

- Dec '05: 17364 units (100%)
- Jan '06: 10724 units (62%)
- Feb '06: 8833 units (51%)
- Mar '06: 8906 units (51%)
- Apr '06: 7986 units (46%)

Monthly Consumption in kWh

% consumption (units) ref Dec 05
Thanking you