Utility of the Future:
Smart Grid, Smart Consumers

Metering East Coast, October 25, 2008
Raleigh NC

Tim Eskew
VP Marketing & Business Development,
Elster Integrated Solutions Global
Utility of the Future

Drivers

- Government policies
- Market liberalization & competition
- Climate change & environmental sustainability
 - CO₂ emissions & policies
- Energy independence & security
 - Demand growth
 - Fuel / wholesale costs
 - Renewables & alternatives
 - Demand response
- Consumer demands
 - Cost, Choice, Comfort
 - Social responsibility
- Infrastructure
 - Aging assets
 - Technical obsolescence
 - Investment priorities (Gen, Tx, Dist)

Copyright © 2008 Elster
Utility of the Future

Climate Change

- Target reduction of GHG emissions
 - EU 20% by 2020
- e.g. EPRI estimates the US Electric sector can by 2030 achieve a reduction to below 1990 levels through:
 - Energy efficiency
 - Renewables
 - Nuclear & advanced coal generation
 - CO$_2$ capture & storage
 - Distributed energy resources
 - Plug-in hybrid electric vehicles
- How do you engage consumers?

Alliance for Climate Protection:
- 9% Activists
- 35% Engaged
- 38% State of Fear
- 18% Ignorant of Issues
Utility of the Future
Energy Efficiency

• Why Energy Efficiency?
 • Large untapped resource
 • Can help reduce GHG emissions
 • Utilities are well positioned to deliver efficiency programs
 • 11 states have energy efficiency goals

• How?
 • Recognize efficiency as a high-priority resource
 • Make long term commitment to implement cost-effective efficiency programs as a resource
 • Align utility incentives & ratemaking
 • Educate & engage consumers

• Via Feedback
 Source: “Direct Energy Feedback Technology Assessment for SCE”, by Lynn Fryer & Nadav Enbar, EPRI Solutions, March 2006
 • Numerous studies have found a savings of 4 to 15% of overall consumption where consumers were given real-time feedback

<table>
<thead>
<tr>
<th>Segment</th>
<th>Efficiency Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Median 26%</td>
</tr>
<tr>
<td>Commercial</td>
<td>Median 22%</td>
</tr>
<tr>
<td>Industrial</td>
<td>Median 14%</td>
</tr>
</tbody>
</table>

Steven Nadel, Anna Shipley & R. Neal Elliott (ACEEE) 2004
Utility of the Future

Demand Response

- Studies/pilots have shown there exist mass market elasticity's of response
 - Customers are more interested in programs if they can realize a significant bill savings (10% or more)
 - The higher the CPP or greater the PTR the better

- Demand response can be used for:
 - Economic dispatch
 - Socioeconomic dispatch
 - Reliability dispatch
 - Environmental sustainability dispatch (intermittency)

<table>
<thead>
<tr>
<th>Elasticity Estimates by Customer Type</th>
<th>Avg</th>
<th>CAC</th>
<th>No CAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution Elasticity (peak to off-peak) CPP</td>
<td>-0.11762</td>
<td>-0.13853</td>
<td>-0.05489</td>
</tr>
<tr>
<td>Daily Price Elasticity CPP</td>
<td>-0.03003</td>
<td>-0.03993</td>
<td>-0.00033</td>
</tr>
<tr>
<td>Substitution Elasticity (peak to off-peak) non CPP</td>
<td>-0.11048</td>
<td>-0.13139</td>
<td>-0.04775</td>
</tr>
<tr>
<td>Daily Price Elasticity non CPP</td>
<td>-0.04660</td>
<td>-0.05650</td>
<td>-0.01690</td>
</tr>
</tbody>
</table>

Source: “EEI Quantifying the Benefits of Dynamic Pricing In the Mass Market”, Jan 2008
Ahmad Faruqui & Lisa Wood, The Brattle Group
Utility of the Future
Renewables & Alternatives

- Renewable energy roadmap
 - Renewable portfolio standards exist in 26 states
- Major sources
 - Wind: 100 GW capacity in 2007
 - Solar: 2.8 GW capacity in 2007
- Grid parity estimates between 2010-2015 based on
 - Decreasing cost of PV & Wind technologies
 - PV: Thin film, Building integrated PV (BIPV)
 - Wind: Superconducting turbines
 - Increasing costs of current generation
- Issues:
 - Distributed source of supply
 - Intermittent source of supply

Source: WWEA
Source: IEA
Utility of the Future

Distributed Energy Resources

- Micro-generation
 - Recuperative micro-turbines
 - Combined heat & power
 - Fuel cells
- Energy storage
 - Ice energy storage for AC
- Rechargeable batteries
- PHEV’s
 - As a distributed energy resource
 - e.g. “better place” battery exchanges & charge spots powered via renewable energy
 - Vehicle-to-grid = source for on-peak supply & ancillary services
- Goal of all distributed energy resources is peak shaving, contingency, & other ancillary services
Utility of the Future

Grid Modernization

- Existing
 - Substation protection
 - Feeder automation
 - Distribution automation
 - Volt-VAR optimization

- New
 - Home area networking
 - Distributed monitoring & control
 - Distributed energy resources
 - Micro-grids

- Goal
 - Integrate existing grid monitoring & control to new distributed & consumer focused resources
 - Requires new generation of distribution management systems
 - Pervasive communications
 - Advanced analytics
 - Dynamic control
Utility of the Future
Linking it all Together: “The Smart Grid”

Smart Grid is an evolution, AMI is today’s building block

Source: EPRI
Utility of the Future
Near Term Smart Grid Impacts (AMI)

- Time Differentiated Rates
- Customer Feedback
- Load Control
- Demand Response
- Awareness & Resource Efficiency
- Climate Change

Load Reduction

- 2-12%
- 4-15%
- 12-40%
- 20-30%
- 15-35%
- 15-35%
Utility of the Future
Long Term Smart Grid Impacts

1. Reduce Customers’ Peak Loads
 - Utility-controlled circuit-level management

2. Discharge Stored Power During Peak
 - Clean, reliable, efficient
 - Targeted deployments

3. Offer Value-Added Services
 - Online energy management
 - Renewables integration

4. Optimize Generation and T&D Assets
 - Charge energy storage and PHEVs off-peak

Source: GridPoint
Utility of the Future
Networks of Communicating Smart Devices

- LAN
- edge connection
- peer-to-peer controlled comms
- battery-powered comms

Applications

- Enterprise Connection

Public and Private WAN Networks

- WAN-to-LAN
- LAN-to-LAN (Bridge)
- Home router

- Meter (E,G,W)
- In-premise device
- Distribution sense & control device

- AMI concentrator
- Smart Grid controller
- Distributed application node
Elster

Platform for the Smart Grid

- 2-way mesh with distributed intelligence
- Built for measurement & control (deterministic comms)
- Energy efficiency & demand response implementations today
- 1st generation smart grid in the field today
Utility of the Future

Benefits

Utility
- Ability to address growing demand incrementally and economically
- Proactive integration of clean/green technology without impact to reliability, stability, and safety
- Improved grid reliability
- Consumer retention
- Reduced financial risk and volatility

Consumer
- Awareness & participation in energy efficiency and energy management
- Reduction of carbon footprint
- Intelligent clean/green utilization
- Cost management

Society
- Environmental and economic sustainability
- Energy independence & security
- Platform for technology evolution
Thank-you

tim.eskew@us.elster.com
(919) 901-2302